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Is Growth Useful in RBC Models?

Abstract: Standard RBC models fail to account for the business cycle stylized facts when growth results

from a random walk in technology. Does this mean that we are to dismiss the evidence in favor of a

unit root in output when we have a prior in favor of RBC models? To answer this question, we explore

the usefulness of introducing an endogenous source of growth in a standard RBC model. Using a formal

measure of Þt, we show that doing so permits both to reproduce some key business cycle facts and to

obtain a unit root in output.
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�Modern business cycle theory starts with the view that growth and fluctuations are not

distinct phenomena to be studied with separate data and different analytical tools.�

T.F. Cooley and E.C. Prescott (1995, p.4)

�If a model (...) produces a random walk in GNP, the results in this paper suggest that the

parameters of that model should be picked to also generate interesting short-run dynamics

of GNP, so that the variance of yearly changes in GNP is much larger than the variance of

shocks to its random walk component.�

J. H. Cochrane (1988, p. 897)

1 Introduction

Hansen (1997) and Ireland (2001) have recently shown that if Real Business Cycle (RBC) models are

to give a correct picture of the business cycle, they need to incorporate very persistent yet stationary

shocks. Consequently, if we are to follow the methodological guidelines suggested by Cooley and Prescott

(1995), this unfortunate conclusion leaves no other choice but to model growth as a deterministic trend.

Does this mean that we are compelled to dismiss the evidence of a unit root in output1 when we have a

prior in favor of RBC models?

To answer this question, this paper explores the consequences of introducing an endogenous source of

growth in an otherwise standard RBC model. Our objective is to see to what extent this strategy enables

us to eschew the apparent incompatibility between RBC models and the presence of a random walk in

output. More speciÞcally, we want to see if, following Cochrane�s (1988) recommendations, it permits

to obtain a realistic random walk in output and yet to reproduce key business cycle stylized facts in a

satisfactory way.

The endogenous growth model which is considered is a slight modiÞcation of the model proposed

by Jones et al. (2000).Two modiÞcations are taken into account. First, we modify the human capital

accumulation technology and use a functional form originally proposed by Lucas and Prescott (1971).

Second, the model incorporates two productivity shocks, one affecting the production of Þnal good and

the other affecting the production of human capital.
1 See the survey by Murray and Nelson (2000).
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We confront the model with versions of the standard RBC framework with either deterministic or

stochastic growth. We compare their ability at reproducing the business cycles stylized facts. To do

so, we Þrst resort to the usual RBC methodology consisting in simulating our models and computing

summary statistics of the business cycle. Second, we use the test proposed by Watson (1993). This test

amounts to Þnding how much error it is necessary to inject into a model so as to reproduce the spectral

density of the data.

Our main results are as follows. Using Watson�s formal measure of Þt, we show that introducing a

simple human-capital-based source of endogenous growth in an otherwise standard RBC model permits

to reproduce key business cycle facts and yet to obtain a realistic random walk in output, thus offering

an interesting alternative to either exogenous stochastic growth or exogenous deterministic growth. In

particular, following Cochrane�s (1988) recommendations, the special shape taken by our knowledge

accumulation and the combination of our shocks permits to disentangle the reproduction of a random

walk in output from the reproduction of key business cycle facts. In this sense, allowing for an endogenous

source of growth allows us to eschew Hansen�s (1997) dilemma. In particular we show that the model

outperforms an RBC model featuring both stationary and permanent productivity shocks calibrated to

reproduce both the variance and the spectrum at frequency zero of output growth. A side result is

that endogenous growth correctly models growth when evaluated with Watson�s (1993) test at very low

frequencies.

Following the pioneering contributions by King and Rebelo (1986), many authors have successfully

incorporated endogenous sources of growth in dynamic stochastic general equilibrium models and shown

that this line of research can lead to substantial improvements over usual RBC models. For example,

Einarson and Marquis (1997), Maffezzoli (2000) and Ozlu (1996) have shown that introducing an en-

dogenous source of growth in RBC models helps reproduce some key comovements unaccounted for by

standard RBC models. In this kind of environment, endogenous growth is not important per se but

simply provides additional reallocation margins implying richer dynamics.

In contrast, authors such as Collard (1999) and Jones et al. (2000) have speciÞcally studied how this

line of research may help us understand the characteristics of cyclical growth. This paper is most closely

linked to that of Jones et al. (2000). They simulate endogenous growth models and conclude that these
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are interesting for at least two reasons. First, they have a natural tendency to generate a high labor

volatility. Second, these models are able to generate positive autocorrelation of output growth, a fact

that RBC models cannot reproduce unless some frictions are added to the standard environment.

Nevertheless, our approach differs from theirs in three important dimensions. First, Jones et al.

calibrate their models at annual frequency. As is common in the RBC literature, we rather choose

to confront our model to quarterly data. Second, our resorting to Watson�s (1993) test permits us to

explicitly quantify how well our models account for the business cycle stylized facts. Third, we pay

particular attention to the ability of the three models considered at reproducing both the variance of

output growth and the size of the random walk in output, as deÞned by Cochrane (1988)2. In contrast,

Jones et al. (2000) are not particularly interested in the long-run properties of their model.

Other authors, such as Dejong et al. (1996) or Perli and Sakellaris (1998) have shown that incorpo-

rating human capital in an RBC model might result in a dramatic improvement upon the performances

of standard models. In particular, this accumulation margin provides additional propagation mechanisms

which help generate a spectral density of output growth exhibiting a hump at business cycle frequencies.

The focus and objective of our paper differ from those of Dejong et al. (1996) and Perli and Sakellaris

(1998). First, these authors do not allow for either endogenous growth or stochastic exogenous growth.

Much as the bulk of the literature, they simply ignore the presence of a random walk in output. In

contrast, we primarily focus on this particular point. Second, our goal is far more modest than their: the

endogenous growth model which is proposed here is not designed to reproduce the shape of the spectral

density of output growth. However, the model is able to generate a random walk in output as large as

its empirical counterpart, yet doing as well as the best speciÞcation in Hansen�s (1997) work.

The remainder is as follows. Section 2 describes the three models which we seek to compare. Each

one is calibrated using as much a priori information as possible. Section 3 gives our result. To ease

comparison with former RBC studies, we Þrst apply the usual RBC methodology, which consists in

simulating the models and computing summary statistics of the business cycle. We then brießy describe

the general philosophy underlying Watson�s (1993) test and then go on to apply it to the three models.

Some sensitivity analyses are performed. The last section brießy concludes.

2Cochrane (1988) deÞnes the size of the random walk in output as the variance of an innovation to the random walk
component of output divided by the variance of output growth.
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2 The Growth Models

In this section, we describe the three models which are considered. It is assumed that the reader has a

good knowledge of the standard RBC model, so that we do not spend too much time on it. For further

details, we refer the reader to the recent survey by King and Rebelo (1998).

2.1 Endogenous Growth

The economy is inhabited by a continuum of identical, inÞnitely-lived consumer endowed with one unit

of time. Agents own all the primary factors, namely physical capital kt−1, raw labor, nt, and human

capital, ht−1. They combine physical capital and effective labor to produce a homogeneous Þnal good

which can be consumed or invested in the accumulation of either human or physical capital. Effective

labor is deÞned as the product of raw labor and human capital, ntht−1. We abstract from population

growth. The representative agent�s goal in life is to maximize:

E0

∞X
t=0

βt [log (ct)− ηnt] (1)

subject to the constraints:

ct + xkt + xht = ζtAk
φ
t−1 (ntht−1)

1−φ
, A > 0, 0 < φ < 1 (2)

kt = (1− δ) kt−1 + xkt, 0 < δ < 1 (3)

ht = γtBh
1−θ
t−1x

θ
ht, B > 0, 0 < θ < 1 (4)

log
¡
ζt+1

¢
= ρζ log (ζt) + εζt+1, 0 < ρζ < 1, εζt ∼ iid (0,σζ) (5)

log
¡
γt+1

¢
= ργ log (γt) + εγt+1, 0 < ργ < 1, εγt ∼ iid (0,σγ) (6)

given an initial condition (k−1, h−1, ζ0, γ0) and subject to the usual positivity constraints. The term

E0 denotes the expectation operator, conditioned on information available as of time t = 0. β is the

subjective discount factor. Equation (2) describes the resources constraint faced by the representative

agent. The LHS lists the three alternative uses of Þnal good: consumption, ct, investment in physical

capital, xkt, and investment in human capital, xht. The RHS describes the Cobb-Douglas technology
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with which output is produced. A is a scale factor, φ is the share of physical capital, and ζt is a stationary

productivity shock.

Equation (3) is the physical capital law of motion, where it is assumed that physical capital linearly

depreciates every period with a constant rate δ. Equation (4) is the human capital law of motion. B

is a scale factor, θ is the elasticity of next period�s human capital with respect to xht and γt is another

stationary shock. Such authors as Cassou and Lansing (1998), Collard (1999), Hercowitz and Sampson

(1991) and Kocherlakota and Yi (1997) have resorted to similar functional forms based on that proposed

by Lucas and Prescott (1971). It can be seen as reßecting adjustment costs in the accumulation of

human capital. Notice that, whereas the above-mentioned authors used this hypothesis to obtain closed-

form solutions in fully log-linear models, we do not seek to obtain such solutions. Instead, we use this

hypothesis because it helps reproduce the size of the random walk in output, as deÞned by Cochrane

(1988). Finally, equations (5) and (6) describe the assumed laws of motion for the productivity shocks

ζt and γt.

Notice that we have imposed the indivisible labor hypothesis in (1). We do so because our main goal

is to investigate to what extent allowing for an endogenous source of growth in a RBC model helps us to

eschew Hansen�s (1997) dilemma. Changing the speciÞcation of preferences would obscure our results.

2.2 Standard RBC Models

The endogenous growth model is compared with a standard RBC model with either deterministic or

stochastic growth. In these models, the representative agent seeks to maximize (1) subject to the con-

straints (3) and:

ct + xkt = yt (7)

where yt is the production of Þnal good as of time t. In the deterministic growth model, we simply

suppose that:

yt = ζtAk
φ
t−1

¡
ntg

t
¢1−φ

(8)

where g > 1 is the constant (raw) growth rate and ζt is the same productivity shock as above in (5).
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In the stochastic growth model, we suppose instead that:

yt = Ak
φ
t−1 (ntξt)

1−φ (9)

log
¡
ξt+1

¢
= log (g) + log (ξt) + εξt+1, εξt ∼ iid (0,σξ) (10)

where log (g) is the drift, with g the same as above. In the calibration step, we will impose the same

value for g in all three models.

2.3 Calibration

Before calibrating the model, we need to express the dynamic system summarizing the evolution of our

economy in a stationary form. As is well known, due to the presence of endogenous growth, the model has

a unit root and implies that all trending variables are cointegrated. Thus, we can pick any of them and

divide the others by it. It is natural in this setup to select ht. The resulting system is then log-linearized

in the neighborhood of the associated deterministic steady state and solved using the undetermined

coefficients method proposed by Uhlig (1999)3. It is easy from this solution to reconstitute the dynamic

behavior of the log Þrst difference of any of the original variables.

We now turn to the calibration of the structural parameters of our model. As in Jones et al. (2000), we

face a tricky measurement problem: How should we count the expenditure ßow xh? Obviously, given our

broad interpretation of human capital, a fraction of xh should be counted as consumption expenditures

(e.g. health care expenditures), and part of the remaining fraction as investment expenditures (e.g. R&D

investment). More troublesome is the fact that some investment expenditures as on-the-job training

or increases in the stock of organizational capital, clearly part of xht, are not counted in the National

Accounts. Thus, it is difficult to tell what part of xh should be counted as investment or as consumption.

Unfortunately, we have no direct information to settle this question. Here, we take the extreme of counting

all xh as consumption. We thus deÞne total measured consumption cmt in period t as: cmt = ct + xht.

None of the results reported below are qualitatively changed if we choose either to count all xh as measured

investment. In the remainder, when we refer to c or consumption, it is intended that the concept should

be interpreted as cm.

3A technical appendix is available from the author upon request.
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The average output growth over the period 1965:1-1995:44 is 0.43%; we consequently set g = 1.0043.

We set the steady state interest rate to 1%, so that β = 0.994. We follow Hansen (1997) and set labor�s

share in output to 64%, thus φ = 0.36. We set δ = 0.01 so that the consumption share is close to its

empirical counterpart (near 74%). The parameter η is pinned down so that the representative agent

devotes 30% of his time endowment to the market, thus n = 0.3 and η = 3.214.

When it comes to the elasticity of h with respect to xh, we face a double constraint. First, this

parameter determines the steady state ratio xh/y which, according to Cassou and Lansing (1999) should

be near 8%. Second, this parameter determines the long-run effect of a shock to γt or ζt, hence governs

the size of the random walk in yt, as deÞned by Cochrane (1988). We set the steady state ratio xh/y

to 8.3% by imposing ξ = 0.0008. Thus, this value delivers approximately the same value for xh/y as

that retained by Cassou and Lansing (1999) and, as described below, permits to reproduce the size of

the random walk in output with a small variance for γt. We then impose B = 1.006 so as to meet our

requirement on g, given the steady state value of xh/h and θ. Finally, we impose that the steady state

value of y/h is normalized to unity. We thus set A = 0.763. The calibration is summarized in table 1.

It remains for us to calibrate the stochastic processes parameters ρζ , ργ, σζ and σγ . We follow

Hansen�s (1997) recommendations and set ρζ = 0.9. Following DeJong et al. (1996), we (somewhat

arbitrarily) suppose that γt is persistent and set ργ = 0.9. We then choose σζ and σγ so that the model

reproduces both the variance and the frequency zero spectral density of output growth. The spectral

density of output growth is obtained from a cointegrated VAR with variables (∆byt,bct − byt, bxt − byt, bnt)
with three lags, where a letter with a hat denotes the natural logarithm of the associated variable and the

sign ∆ stands for the Þrst difference Þlter. The lag in the VAR is chosen by minimization of the Schwartz

information criterion. The exact values are: σζ = 0.4502% and σγ = 0.0491%. Notice that our procedure

compels the model to exactly reproduce the relative size of the random walk in output, as deÞned by

Cochrane (1988). To complement our analysis, we will also study to a speciÞcation of the endogenous

growth model without shocks to γt. In this case, we cannot simultaneously reproduce the variance of

output growth and its spectrum at frequency zero. We then select σζ so as to simply reproduce the

variance of ∆byt. The exact choice is σζ = 0.4687%. Notice that it is possible to reproduce the spectrum
4The data are described in appendix A.
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at frequency zero of output growth, but at the cost of imposing unreasonably high a variance for ζt.

We now give the details pertaining to the two RBC models. We still impose g = 1.0043 and R = 1.01.

We normalize the steady state value of output in both cases. More precisely, we set the steady state value

of yt/gt in the deterministic growth model or yt/ξt in the stochastic growth model to one. In both cases,

we set n = 0.3. The parameters φ, β and δ take the same values as in the endogenous growth model.

We then set ρζ = 0.9, and select σζ and σξ so that the exogenous growth models exactly reproduce the

variance of output growth5. The chosen values are σζ = 0.4671% and σξ = 0.9166%.

3 Simulations

We now turn to our results. As mentioned in the introduction, we start by comparing the three models

using the usual RBC methodology, i.e. we simulate each model and apply the Hodrick-Prescott Þlter to

the artiÞcial time-series. Then, we take the model to the data using Watson�s (1993) test. This step is

designed to quantify and formally conÞrm the preceding results.

3.1 Usual RBC Methodology

To ease comparison with former RBC studies, both with or without endogenous growth, we now propose

to simulate each of our models and compare the results with our sample ranging from 1965:1 to 1995:4.

The cyclical component of each series is deÞned as the residual after extraction of a smooth trend using the

Hodrick-Prescott Þlter. Since we are working with quarterly time series, we set the smoothing parameter

to 1600. For each model, we draw 100 time series of 124 periods for output, consumption, investment,

hours and average labor productivity. Standard deviations as well as correlations are computed, averaged

over our 100 draws and compared with their empirical counterparts. The results are reported in table 2.

Panel A reports the statistics computed for output, consumption, investment, hours and average labor

productivity in our sample. Panel B reports similar statistics for the endogenous growth model with two

shocks (ζt and γt). Panel C gives the results with the single-shock speciÞcation of the endogenous growth

model. Panels D and E report results for the trend stationary and difference stationary RBC models,

5When it comes to the stochastic growth version of the basic RBC model, we could have alternatively selected σξ so as
to reproduce the spectral density of output growth at frequency zero. This strategy would have made the model look bad
for the wrong reason: the spectrum of output growth at frequency zero is very small compared to the peak it reaches at
business cycle frequencies.
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respectively.

As is clear form the Þgures reported, none of our models can replicate the standard error of the HP

cyclical component of output. This Þrst result is interesting since it simply states that neither standard

RBC models nor our endogenous growth model can replicate both the variance of output growth and the

variance of the cyclical component of output. For this reason, the second column of table 2 may be more

informative.

As emphasized by Hansen (1997), an RBC model with stochastic growth suffers from two major

shortcomings which are conÞrmed in panel E. First, it cannot reproduce the relative volatility of labor.

Second, it fails at replicating the relative volatility of investment. Moreover, it clearly predicts too high a

correlation between hours and average labor productivity. On the Þrst two shortcomings, a speciÞcation

with deterministic growth clearly does a far better job. Unfortunately, it still predicts a high correlation

between n and y/n. Notice that our results do not exactly conÞrm Hansen�s (1997) in terms of the

absolute volatility of output. To exactly reproduce his results, we would have to set the restriction

σζ = σξ/ (1− φ). In contrast, the variance of our shocks in the RBC models are selected to reproduce
that of output growth. Thus, σξ is much higher than σζ . In other words, the RBC model with stochastic

growth does a very poor job at reproducing the key business cycle stylized facts.

When it comes to our endogenous growth model, we obtain a substantial improvement over the

difference stationary RBC model. Notice however that the endogenous growth model with only shocks to

ζt is virtually indistinguishable from the RBC model with trend stationary technical progress. Comparing

panels C and D in table 2, we do not see any quantitatively signiÞcant difference between the two models.

Nevertheless, there exists one which the HP Þlter necessarily hides6: the endogenous growth model

generates a random walk in output (and the other growing variables). Using the deÞnition given by

Cochrane (1988), however, we obtain a random walk the size of which is more than 20,000 times as small

as its empirical counterpart. Thus, in this case, everything is as if we had only modelled the deterministic

trend in technical progress: the random walk in output is so small that it could easily be ignored by a

formal stationarity test. Adding a shock to γt substantially modiÞes this picture.

When we take two shocks into account, we obtain even more encouraging results. The relative

6King and Rebelo (1993) have shown that when we apply the HP Þlter on a time series, we implicitly Þrst-difference
four times this variable.
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volatilities of investment and labor roughly match their empirical counterparts. Moreover, the correlation

between average labor productivity and hours has extraordinarily decreased. In a somewhat different

context, Ozlu (1996) obtained a similar result. It is clear that this important improvement results from

the introduction of an additional shock, namely γt, in the model. Even though the relative volatility of

consumption is twice as small as its empirical counterpart, it is substantially higher than in the trend

stationary RBC model. Thus, globally, our endogenous growth model is at least as good as the RBC

model with deterministic growth and clearly beats it when we take two shocks into account.

What makes the endogenous growth model look so good? It can be shown that a shock to ζt explains

the major part of the variance of output growth in this model. On the contrary, a shock to γt essentially

explains the random walk in output, but does not contribute much to the variance of ∆byt. In other
words, the instantaneous response of output to a shock to a one-standard-error innovation in ζt is much

higher than the associated long-run effect, which makes the endogenous growth model resemble a trend

stationary RBC model. On the contrary, the long-run effect of a one-standard-error shock to γt is higher

than the associated instantaneous response of output, which is very small. Thus, if there were only shocks

to γt, the model would resemble a difference stationary RBC model. With both shocks to ζt and to γt,

we obtain what is best in each world. More precisely, following Cochrane�s (1988) recommendations,

the particular combination of our shocks thus permits to disentangle the reproduction of a random walk

in output from the reproduction of the key business cycle facts: the HP-Þltered movements of output

generated by a shock to ζt are always bigger than those generated by a shock to γt. In this sense, allowing

for an endogenous source of growth has allowed us to eschew Hansen�s (1997) dilemma.

To sum up, the endogenous growth model is able to correctly reproduce the size of the random walk

in byt and, at the same time, can catch the key features of the business cycle. However, up to now, we have
no idea as to the the quantitative importance of correctly reproducing the random walk in output. In the

following exercises, the business cycle is deÞned as the residual after HP-Þltering the main macroeconomic

aggregates. Since HP-Þltering eliminates the low-frequency movements in the variables, the methodology

used in this section is of no help to answer this question. Consequently, based on the statistics reported

in this section, it seems difficult to decide between the endogenous growth model and the trend stationary

RBC model. To gain further information, we now turn to Watson�s (1993) test.

11



3.2 Quantifying the Goodness of Fit

In this subsection, we describe the philosophy underlying Watson�s (1993) test before implementing it so

as to assess which growth hypothesis Þts the data best.

3.2.1 Describing Watson’s (1993) Test

Watson�s (1993) test allows us to synthesize the ability of a model to reproduce both the business

cycle stylized facts and the low frequency behavior of the data. Indeed, it consists in decomposing

the performances of a model into the frequency domain. The method might be described as follows.

Assuming that the empirical and simulated data are jointly stationary, we can deÞne the error induced

by the model as the difference between the two data sets. Let dt and τ t denote, respectively, the empirical

and simulated data, and deÞne naturally the approximation error as ut = dt − τ t. To Þx the ideas, we
will study the spectral properties of the process dt = (∆byt,∆bct,∆bxt,∆bnt). The method proposed by
Watson (1993) consists in minimizing a weighted trace of the variance of the error ut which we have to

plug into the model τ t so that the spectral density matrix of the latter corresponds to that of dt. Given

the deÞnition of ut, we can deÞne the spectral density matrix of u at frequency ω by the formula:

Fu
¡
e−iω

¢
= Fd

¡
e−iω

¢
+ Fτ

¡
e−iω

¢− Fτd ¡
e−iω

¢− Fdτ ¡
e−iω

¢
where Fa

¡
e−iω

¢
is the spectrum of a at frequency ω (if a is an n dimensional vector, Fa (·) is an n× n

matrix), and Fab
¡
e−iω

¢
is the cross-spectrum of a and b. We resort to the state space form of the

approximate solution to the model to compute Fτ
¡
e−iω

¢
. To obtain Fd

¡
e−iω

¢
, as proposed by King

et al. (1991) and Watson (1993), we use the parameters from the cointegrated VAR with variables

(∆byt,bct − byt, bxt − byt, bnt) previously estimated. In contrast, the cross spectrum Fτd
¡
e−iω

¢
cannot be

estimated, and is rather chosen so as to minimize a weighted trace of the variance of ut subject to the

constraint that the spectral density matrix of (τ t, dt) is positive semideÞnite at all frequencies. In the

following application, we will give equal weight to each of the components of ut.

For each frequency, we can determine a lower bound of the variance of the approximation error divided

by the variance of the data; let r (ω) denote this bound and rj (ω) denote the jth component of r. In the
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same fashion, let Fa
¡
e−iω

¢
jj
denote the (j, j) element of matrix Fa. We can then deÞne:

rj (ω) =
Fu

¡
e−iω

¢
jj

Fd (e−iω)jj

Watson (1993) proposes to integrate separately both the numerator and denominator of the above ex-

pression, deÞning so the relative mean square approximation error (RMSAE) which the model induces

compared with the data. The smaller it is, the better the model reproduces the spectral behavior of

component j in the vector d. We can then choose to highlight the quality of the model by focusing on a

particular frequency band.

3.2.2 Applying Watson’s (1993) Test

We now proceed to implement the above-described methodology in all our three models. We start this

exercise with the variables taken in log-Þrst difference. The associated rj (ω) are integrated over four

different frequency ranges. First, we focus on the interval [0,π], which permits us to see how well a given

model globally behaves. Second, this interval is narrowed to [0,π/3], so as to emphasize the second order

properties of the models over business cycle and growth frequencies -i.e. periods ranging from 6 quarters

to inÞnity. The last interval is then broken down into two separate ranges, one for the business cycle,

[π/16,π/3] (period 6 to 32 quarters), and one for the long-run, [0,π/16] (32 quarters to inÞnity). Finally,

we apply the HP-Þlter to the variables taken in level, and integrate the rj (ω) over [0,π], as proposed by

Watson (1993). The results are reported in table 3.

Using a different approach than in the previous quantitative exercise, we obtain very similar results.

In particular, comparing panel D with any of the panels A, B or C, it appears that a difference stationary

RBC model always produce higher RMSAE than other models. Globally, this result strongly conÞrms

Hansen�s (1997) and Ireland�s (2001) conclusions.

Comparing panels B and C, we see that a trend stationary RBC model slightly outperforms the

endogenous growth model with only shocks to ζt. Recall that in this case, neither model is able to

reproduce the random walk in output, i.e. the models necessarily behave poorly at very low frequencies

(for example over the frequency range [0,π/32]). In contrast, augmenting the endogenous growth model

with an additional shock devoted to reproducing the random walk in output, substantially improves our

results.
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Comparing panels A and C, we see that both the trend stationary RBC model and the two-shock en-

dogenous growth model have similar performances when it comes to investment. However, the endogenous

growth model seems better at reproducing the behavior of consumption or output. The opposite con-

clusion obtains with total hours over the frequency range [0,π]. However, restricting the frequency band

to [0,π/3], the two-shock endogenous growth model uncontroversially outperforms the trend stationary

RBC model.

Last but not least, notice that the exogenous deterministic growth hypothesis outperforms the exoge-

nous stochastic growth hypothesis over the frequency range [0,π/16], which corresponds to medium-run

to long-run movements. This result substantially reinforces the conclusion previously obtained by Hansen

(1997) and Ireland (2001). They found that modelling growth as resulting from an exogenous stochastic

trend in technical progress deteriorates the performance of stationary RBC models at business cycle fre-

quencies. We found that over a lower frequency range, it is actually beaten by a model with no random

walk at all! It is reassuring to see that in this dimension, our minimal endogenous growth hypothesis

gives the best results: endogenous growth correctly models growth. As is clear from the comparison of

panels A and B, this positive result stems from the introduction of γt. If this additional shock is omitted,

the endogenous growth model still beats the difference stationary RBC model over the frequency range

[0,π/16], but the trend stationary RBC gives slightly better results.

Using Watson�s (1993) test has permitted to globally conÞrm our previous conclusions. However, we

now have a precise idea as to the relative importance of reproducing the size of the random in output.

As mentioned above, when the endogenous growth model is only hit by shocks to ζt, it has �almost�

no random walk in output and is very similar to the trend stationary RBC model. On the contrary,

the two-shock speciÞcation, which exactly reproduces the size of the random walk, globally exhibits the

smallest RMSAEs. However, the good performances of this speciÞcation do not just rely on the correct

reproduction of the random walk in output. To see this, notice that it exhibits small RMSAEs over the

frequency band [π/16,π/3] which eliminates long-run movements. We suspect that this result is linked

to the particular functional form retained for the accumulation of human capital.
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3.3 Sensitivity Analysis

As mentioned before, the particular shape that is taken by our human capital accumulation has been

chosen because it helps disentangle the reproduction of the variance of output growth from the repro-

duction of the its spectrum at frequency zero. Even though there is no �standard� functional form for

this accumulation technology, one may wonder how sensitive are our results to the particular assump-

tions made in eq. (4). To help answer this question, we propose to replace this equation with the more

conventional functional form:

ht = (1− θ)ht−1 + γtBxht (11)

The parameter θ is then interpreted as the depreciation rate of human capital. We then face two difficulties

with this speciÞcation. First, as explained in the calibration, xh/y should be near 8%. However, when

we impose θ = 0, which is a reasonable value with the speciÞcation in (11), we obtain xh/y = 0.275.

Setting θ to a higher value results in an even bigger ratio xh/y when we impose the general restrictions

previously discussed. Second, this functional form cannot be used to reproduce the spectrum of output

growth at frequency zero. Doing so would result in a HP-Þltered consumption negatively correlated with

HP-Þltered output. Here, we simply ignore γt and set σζ = 0.2907% so as to simply reproduce the

variance of output growth.

The results are reported on table 3 (panel F). Using Watson�s (1993) test, we obtain similar results for

output and signiÞcantly deteriorated results for investment and consumption compared with the trend

stationary RBC model. Moreover, the random walk in output is about 20 times as small as its empirical

counterpart. Notice however that our results conÞrm the conclusions of Jones et al. (2000), in that the

model with a linear accumulation for human capital needs a relatively small RMSAE for reproducing the

spectrum of total hours growth.

Thus, it derives from this sensitivity analysis that the particular shape taken by our human capital

accumulation in (4) helps take Cochrane�s (1988) recommendations into account. In combination with

our structural productivity shocks, it helps reproduce the random walk in output without deteriorating

the ability of the model to reproduce key features of the business cycle. In contrast, a more conventional

speciÞcation like in eq. (11) does not have the same amount of ßexibility.
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If disentangling the reproduction of the random walk in output from the reproduction of the variance

of output growth is so important, why not considering an RBC model with both stationary and perma-

nent productivity shifts? Hansen (1997) proposed a Þrst approach following this line of reasoning and

considered a single productivity shock with a permanent and transitory components. Here, we propose

to compare our two-shock endogenous growth model with a two-shock RBC model. Formally, we suppose

that the representative agent seeks to maximize (1) subject to the constraints (7) and:

yt = ζtAk
φ
t−1 (ntξt)

1−φ (12)

where ζt and ξt evolve according to (5) and (10), respectively. We set ρζ = 0.9, σζ = 0.4854% and

σξ = 0.4164%.

The results are reported on table 3 (panel E). Compared with our two-shock endogenous growth

model, this speciÞcation needs a lower RMSAE to reproduce the spectrum of consumption growth over

the frequency ranges [0,π/3], [π/16,π/3] and [0,π/16]. The model otherwise seems to obtain somewhat

lower performances than the two-shock endogenous growth model. In particular, it needs a higher RMSAE

for output and investment growth. It follows from these results that our endogenous growth model is

better armed than a two-shock RBC model to disentangle the reproduction of the random walk in output

from the variance of output growth.

4 Conclusion

In this paper, we have shown that the way in which one models growth might heavily impact on the

performances of an RBC model, thus conÞrming the conclusions previously obtained by Hansen (1997)

and Ireland (2001). Nevertheless, in contrast to them, we do not conclude that modelling growth as

resulting from an exogenous deterministic trend is the one best way to mimic the second order properties

of the relevant data.

Using either the usual RBC methodology or the test proposed by Watson (1993), we have shown that

introducing an endogenous source of growth might prove far better an assumption. Indeed, introducing a

simple human-capital-based source of endogenous growth in an otherwise standard RBC model permits

to reproduce key business cycle facts as well as to obtain a realistic random walk in output, thus offer-

ing an interesting alternative to either exogenous stochastic growth or exogenous deterministic growth.
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Moreover, our results suggest that it might be important to distinguish productivity shocks according to

their contribution to the spectral decomposition of the variance of output growth. As in a trend station-

ary RBC model, standard productivity shocks have good properties in our model because they mainly

affect the variance of output growth over business cycle frequencies. On the contrary, shocks impacting

the human capital accumulation help get even better results because they mainly affect the variance of

output growth at very low frequencies. Comparing this setup with an RBC model with both stationary

and permanent productivity shifts, we obtained that our model represents a better approximation of real

world ßuctuations.
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Appendix

A Data Description

So as to deÞne our macroeconomic variables, we start from the following time series:

[1] : consumption of durable goods;

[2] : consumption of non durable goods;

[3] : consumption of services

[4] : private fixed investment;

[5] : average weekly hours;

[6] : total non farm employment;

[7] : civilian population over 16;

The quarterly time series [1]− [4] are taken from the NIPA, over the period 1964(4)-1995(4); the Þrst

point is used to deÞne the growth rate of output. The monthly series [5]− [7] are taken from the BLS over
the period 1964(1)-1995(12); they are transformed to quarterly frequency by simply taking the average

value over a quarter. We then deÞne the aggregate series:

c : ([2] + [3])/[7];

x : ([1] + [4])/[7];

y : c+ x;

h : [6] ∗ [5]/[7];

Notice that public expenditures are excluded from our deÞnition of c, x and y. Finally, average labor

productivity is deÞned as the ratio y/n.
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Table 1
Calibration Summarya

Panel A: Structural Parameters
Parameter Value Interpretation

β 0.9943 Subjective discount factor
η {3.2144,2.8724} Leisure weight in utility
A 0.7634 Scale parameter in the Þnal good technology
φ 0.3600 Share of capital in the Þnal good technology
δ 0.0100 Depreciation rate of physical capital
θ 0.0008 Elasticity of h wrt xh
B 1.0063 Scale parameter in the knowledge technology

Panel B: Stochastic Shocks
Parameter Model Value Interpretation

ργ EGR 1 0.9000 Persistence of γt
ρζ EGR 1, EGR 2, RBC 1 0.9000 Persistence of ζt
σγ EGR 1 0.0491 S.E. of εγ in %
σξ RBC 2 0.9166 S.E. of εξ in %
σζ EGR 1 0.4502 S.E. of εζ in %
� EGR 2 0.4687 �
� RBC 1 0.4671 �

aCalibration of the structural parameters. The Þrst value of η in panel A is for the endogenous model
and the second for the RBC models. Model codes in panel B: EGR 1, benchmark endogenous growth. EGR
2, endogenous growth model with only shocks to ζ. RBC 1, trend stationary RBC model, RBC 2, difference
stationary RBC model.
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Table 2
Standard Errors and correlationsa

Panel A: Data
Correlation Matrix

Variable Standard Error S.E. Rel. to y y c x n y/n
y 1.83 1.00 1.00
c 0.89 0.49 0.88 1.00
x 6.65 3.64 0.94 0.74 1.00
n 1.64 0.90 0.83 0.73 0.77 1.00

y/n 1.01 0.55 0.45 0.39 0.45 -0.12 1.00
Panel B: EGR 1

y 1.38 1.00 1.00
c 0.29 0.21 0.33 1.00
x 5.14 3.73 0.99 0.17 1.00
n 1.31 0.95 0.98 0.12 0.99 1.00

y/n 0.29 0.21 0.33 1.00 0.17 0.12 1.00
Panel C: EGR 2

y 1.39 1.00 1.00
c 0.19 0.14 0.76 1.00
x 5.00 3.59 0.99 0.72 1.00
n 1.25 0.90 0.99 0.70 0.99 1.00

y/n 0.19 0.14 0.76 1.00 0.72 0.70 1.00
Panel D: RBC 1

y 1.38 1.00 1.00
c 0.19 0.14 0.76 1.00
x 4.98 3.60 0.99 0.71 1.00
n 1.25 0.90 0.99 0.69 0.99 1.00

y/n 0.19 0.14 0.76 1.00 0.71 0.69 1.00
Panel E: RBC 2

y 1.47 1.00 1.00
c 0.72 0.49 0.99 1.00
x 3.68 2.50 0.99 0.98 1.00
n 0.77 0.52 0.99 0.96 0.99 1.00

y/n 0.72 0.49 0.99 1.00 0.98 0.96 1.00

aStandard errors and correlation matrix for the quarterly sample 1965:1-1995:4 and for
the models. The Þgures reported for the latter are sample means of statistics computed for
each of 100 simulations of 124 periods. Both artiÞcial and actual series are logged and HP-
Þltered, setting the smoothing parameter to 1600. The exogenous stochastic disturbances are
calibrated as described in the text. The standard deviations have been multiplied by 100.
Volatility relative to output is the standard deviation divided by the standard deviation of
output. Model codes as in table 1.
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Table 3
RMSAEa

Panel A: EGR 1 Panel B: EGR 2
Frequency range Filter by bc bx bn by bc bx bn

[0,π] ∆ 0.1910 0.5542 0.0871 0.9988 0.2283 0.9677 0.0872 0.9395
[0,π/3] ∆ 0.2141 0.5831 0.1188 0.4319 0.2379 0.8202 0.1297 0.4360

[π/16,π/3] ∆ 0.2136 0.6075 0.1177 0.3852 0.2331 0.8384 0.1283 0.3861
[0,π/16] ∆ 0.2407 0.5181 0.1501 0.6201 0.2878 0.7558 0.1641 0.6386
[0,π] HP 0.2802 0.6529 0.1719 0.4641 0.2978 0.8031 0.1859 0.4753

Panel C: RBC 1 Panel D: RBC 2
Frequency range Filter by bc bx bn by bc bx bn

[0,π] ∆ 0.2283 0.9669 0.0872 0.9420 0.3089 2.6897 0.3085 2.2288
[0,π/3] ∆ 0.2378 0.8234 0.1288 0.4352 0.2739 1.2657 0.2097 0.5757

[π/16,π/3] ∆ 0.2330 0.8418 0.1275 0.3856 0.2720 1.4121 0.2060 0.5268
[0,π/16] ∆ 0.2874 0.7588 0.1630 0.6362 0.2902 0.6937 0.2652 0.7751
[0,π] HP 0.2977 0.8069 0.1848 0.4741 0.2907 0.8844 0.2900 0.6911

Panel E: RBC 3 Panel F: EGR 3
Frequency range Filter by bc bx bn by bc bx bn

[0,π] ∆ 0.2706 1.8875 0.0925 1.1448 0.1925 4.1775 0.4977 0.9007
[0,π/3] ∆ 0.2262 0.5146 0.1498 0.4662 0.2210 1.5138 0.5943 0.3921

[π/16,π/3] ∆ 0.2255 0.5381 0.1486 0.4166 0.2174 1.8450 0.5930 0.3556
[0,π/16] ∆ 0.2541 0.4454 0.1844 0.6682 0.2662 0.2977 0.6243 0.5423
[0,π] HP 0.2982 0.6547 0.2088 0.5188 0.2869 0.9462 0.6392 0.4302

a In all the reported experiments, we give equal weight to the four variables. The sign ∆ refers to the Þrst-
difference Þlter, and HP refers to the Hodrick-Prescott Þlter, with smoothing parameter set to 1600. Model codes
as in table 1 and EGR 3: endogenous growth model with a linear accumulation of human capital, RBC 3: RBC
model with both stationary and permanent productivity shocks
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